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SUMMARY

We present two methods for efficiently sampling the response (trajectory space) of dynamical systems
operating under spatial uncertainty assumed to be representable with Gaussian processes. The
dynamics of such systems depends on spatially indexed uncertain parameters that span infinite
dimensional spaces. This places a heavy computational burden on the implementation of existing
methodologies, a challenge addressed with two new conditional sampling approaches. When a single
instance of the uncertainty is needed in the entire domain, we use a fast Fourier transform technique.
When the Gaussian process has a compactly supported kernel, we use an incremental sampling
approach, which not only is fast but also has a very small memory footprint. We prove that both
methods produce the same distributions as the widely used Cholesky-based approaches while having
much less complexity. We illustrate this convergence at a far smaller computational effort and memory
cost for a simple vehicle model.
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1. INTRODUCTION

The importance and impact of uncertainty in a broad spectrum of science and engineering
problems are widely recognized. Uncertainty quantification has been studied for decades,
with methods and techniques improving in accuracy and robustness. Painstaking effort has
been exerted in the modern computer era to adapt uncertainty quantification methods,
leveraging the ever-growing storage and computing power available to the scientific community.
Uncertainty quantification processes are now being demanded to evaluate at new levels of
completeness and fineness. In order to these demands, a premium is placed on the efficiency
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2 K. SCHMITT, M. ANITESCU AND D. NEGRUT

of the methods used. This paper addresses the efficiency of uncertainty quantification for
dynamical systems operating under spatial uncertainty.

A good overview of uncertainty quantification methods commonly in use can be found in
[1]. Probably the most widespread technique is represented by random sampling methods,
such as Monte Carlo and Latin hypercube sampling methods [2, 3]. Reliability methods can
be computationally less intensive than sampling methods [4]. Their increased efficiency is the
result of the fact that the entire surface response is updated by any given sample information.
This update can be carried out by mean value [4], global Gaussian process [5, 6], and other
approaches [7]. Polynomial chaos expansion (PCE) methods construct a polynomial surface
response approximation [8, 9]. They use either a nonlinear projection Galerkin method [8]
or a collocation approach [10] to obtain the polynomial approximation. PCE methods have
generally been impaired, however, by a relatively low dimension of the uncertainty space that
they can span [10]. The other methods are in principle applicable independent of dimension.
Nonetheless, their efficiency tends to degrade with the increasing dimension of uncertainty
spaces if one uses the implementations presented in the above references.

Spatial uncertainty quantification – learning, inference, and sampling in multidimensional
space – is being held to ever-escalating expectations. One of the primary reasons is the
unbounded dimensional nature of the problem; problem spaces can always be larger and desired
results can always be finer. In this context, the research progress has reached a fork in the
methodological road: the continuation of traditional methods or the imposition of conditions
and constraints on traditional methods to elicit an exploitable problem structure or pattern.
Our methodologies are of the later contingent.

Kriging and its variations, co-kriging and kriging with regression, are example of the
developing nature of spatial uncertainty [11, 12, 13]. These ”hybrid methods,” as they are
called, were contrived to address accuracy and robustness concerns, capable of extending
to less-structured data (i.e. nonstationary, nonhomogeneous). Still, the methods require the
solution of small kriging systems at each sample point or the solution of a large system,
using global dual kriging simulation. These methods are suitable for data interpolation of
small sample sets from large data sets but cannot be overextended without encountering
significant computational effort. Gaussian processes, as presented in [14] and applied in [15], are
an especially accurate and usable methodology for interpolating spatial data. Unfortunately,
like kriging methods, the Gaussian processes framework traditionally suffers from numerical
instability and excessive storage requirements because of the matrix operations it employs. Our
proposed methodologies address these problems. The first presents an analogous approach for
Gaussian processes in a matrix-free fashion in the frequency domain. The second presents
an incremental approach to data interpolation where interpolation is done only in areas of
interest.

Some traditional methods for spatial uncertainty calculations, such as white-noise methods
and spectral methods, fare much better than kriging with respect to runtime yet suffer from
accuracy and robustness issues. Examples of the first type of method, based on homogeneous
random processes, are explained in [16, 17]. While these methods model a large class of
problems and may be useful in design and simulation, they are nonetheless not appropriate
for situations where the spatial variation has large areas of coherence that are inhomogeneous,
a common occurrence in real-life applications. Another original approach is discussed in [18],
where the use of traditional spectral methods is supplemented with covariance spectrum phase
values conditioned from data. However, the methodology is plagued by accuracy limitations
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EFFICIENT SAMPLING OF SPATIAL UNCERTAINTY 3

typically associated with spectral methods. For one, accuracy of these methods is dependent
on the number of harmonics used and can quickly become hard to implement and manage.
Also, spectral techniques cannot easily accommodate rapid variations in the properties of the
surface, which is a well-known side effect of the Gibbs phenomenon, thus presenting robustness
concerns.

Growing problem complexity and solution resolution have led to creative approaches for
conditioned problems, that is, solution methods that gain efficiency in lieu of robustness, and
sometimes accuracy. The methods still provide informative results that can be used in industry
applications. One common approach is regimenting the data space to a lattice and sampling
from the prior; that is the samples are not conditioned on the local deviation from the prior
model. The benefit of this simplification is that the covariance matrix is Toeplitz and can be
sampled from by leveraging fast Fourier transforms (FFT) [19]. Another perspective gaining
wider acceptance is the sparse-grid assumption introduced by Stein in [11]. Stein leverages
compact support kernels to limit the training data set size required for statistically accurate
and consistent interpolation. This is especially useful with high-frequency data sets, where
correlation decays to nearly zero quickly. Stein, however, does not couple sparse grid theory
with conditional sampling to allow for truly dynamic interpolation (as we present as our second
method).

Our first method, herein referred to as periodic fold sampling (PFS), imposes one condition
and one assumption to conduct the entire Gaussian processes in a matrix-free fashion. The
condition is that the data is provided on a lattice. The assumption is that the space is periodic,
and this is reflected in the autocorrelation function; this assumption is tried and introduces
few problems far from boundaries when working on large grid spaces.

Our second method, herein denoted the incremental compact kernel approach (ICKA),
imposes a sparse-grid assumption to localize the data interpolation. That is, data need
not be interpolated all at once on the entire problem space but rather can be interpolated
incrementally only in the proximity of the region of importance. This framework is different
from other approaches in that its effort is invariant to problem size.

Both methods are tested in conjunction with the simulation of nonlinear vehicle dynamics.
The spatially uncertain property interpolated with Gaussian processes in this paper is the
friction coefficient; imagine, for instance, randomly distributed patches of ice on a road. ∗

Both methods prove to be several orders faster than traditional Gaussian process sampling
approaches while achieving similar results. Furthermore, the incremental sampling method
shows a linear increase of runtime with simulation time, suggesting that interpolation runtime
is negligible compared to simulation runtime.

For PFS, we present the specifics of each matrix-free Gaussian processes step conducted
in the frequency domain: data organization and data augmentation, estimation of hyper-
parameters, computation of posterior distribution characteristics, and multivariate Gaussian
sampling. We explain how FFTs are used to map between the time and frequency domains. We
note that FFT approaches have been used to sample from prior distributions [20] but not, as
far as we know, from the posterior distribution. We show in conjunction with PFS convergence
of the resulting sample mean and sample covariance to the respective values computed with

∗Schmitt et al. employed traditional Gaussian processes with this scenario in [15], resulting in accurate results
but an exponential runtime vs. simulation time function impeding real-time simulation.
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traditional Gaussian processes, as in [15]. For ICKA, we describe the compact support kernel
in detail, including a discussion of the implementation process, formal proofs, and numerical
results. For the latter, there is no descriptive way to compare the resulting data set (on a
path) with one computed with traditional methods (on a grid). Instead, we show convergence
of the average dynamic behavior of a vehicle model on the uncertain friction space predicted
first with traditional methods and then using ICKA.

2. NONLINEAR DYNAMICS APPLICATION

Spatial uncertainty quantification has been proved feasible and insightful in computer
experiments where the spatial properties are static or nearly static, which include geology and
climate studies. Unfortunately, sophisticated methods such as traditional Gaussian processes
are of limited use when dealing with large, rapidly changing uncertainty problems because of
the heavy computational burden associated with the methodology. Uncertainty quantification
of dynamical system response carried out under these circumstances is hindered less by the
numerical simulation cost and more by the prohibitive cost associated with sampling of the
posterior. The proposed PFS and ICKA methods to correct this situation.

2.1. Dynamical Systems with Spatially Dependent Uncertainty

We are interested in characterizing the spatial uncertainty effects on a dynamical system

ẋ = f(x, t, η(x)), (1)

subject to a given set of initial conditions. The function f(x, t, u) is the intrinsic function
that dictates the dynamics of the system; it is a known function obtained as the outcome of
a mathematical modeling stage that is not of interest here. The quantity η(x) is a random
variable indexed by the space variable x. We want to solve the following problem:

Characterize the distribution of the trajectory (random variable)
x(t) at a given time t or for a collection of times t1 < t2 < . . . < tN .

For example, (1) may represent the equations of motion of a vehicle, whereas η(x) can be
the uncertain road elevation or friction coefficient.

The same formalism can be applied to differential algebraic equations with virtually no
change in the approach. For simplicity, we restrict our presentation to the case of ordinary
differential equations (1).

In a stochastic framework, (1) is more rigorously reformulated as

ẋ = f(x, t, η(x, ω)), (2)

where ω is an element of the event space Ω. This results in a trajectory x(t, ω), which is thus a
random variable. An example of quantity to be investigated is Eω [x(T, ω)], the expected state
at a time T . The key to efficiently solving the stated problem is to sample η(x, ω) efficiently,
that is, produce a sample function η(x, ω1) for a given event ω1 ∈ Ω and for any x.

To simplify the notation, we state merely that η(t) and x(t) are random variables, and we
do not explicitly denote their dependence on ω. Note that (1) is not a stochastic differential
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EFFICIENT SAMPLING OF SPATIAL UNCERTAINTY 5

equation; rather, it is a differential equation with an infinite-dimensional stochastic parameter.
The difficulty of the uncertainty quantification problem presented in this work is that we
must accommodate an infinite-dimensional uncertainty space. Each realization is not a sample
vector; rather, it is a sample “hypersurface.” To sample the dependent trajectory x(t), we
must sample the x-indexed random surface η(x).

We are interested in quantifying the uncertainty in the system (1) in two circumstances. In
one circumstance, we are using a sample surface only once. This is the case if we know the
starting point of a vehicle in a random terrain and we aim to characterize the expected end
behavior of the vehicle. Here, sample values are needed only in a small area in a neighborhood of
the path. Of course, the difficulty is that the path itself depends on the sample. We circumvent
this difficulty in the case where the Gaussian process that models the spatial uncertainty has
a compact kernel. By using conditional simulation we derive the ICKA, which has both low
computational cost and low memory requirements.

In the second circumstance, we are interested in determining the statistics of x(t) when the
uncertainty appears in finite-dimensional random parameters (such as initial position or vehicle
weight) in addition to the spatially dependent uncertainty. Sampling in an infinite dimensional
space can be expensive. From this perspective, an economical approach is to sample conditional
on instances of η(x) according to the conditional probability density rule:

p (x(t)) = p (x(t)| η(x)) p (η(x)) .

In that case, computing expectations of functions ψ of the trajectory x(t) results in

E[ψ (x(t))] = EηE [ψ (x(t))| η(x)] .

Therefore η sample surfaces can be used for multiple values of the other sample variables. As
opposed to the preceding regime, samples are needed in the entire sampling region, so whole
grid samples need to be provided. We use a fast Fourier transform approach that needs only
O(n log(n)) effort to create one sample from the correct distributions.

The two methods presented in this paper for sampling such uncertainty spaces make
real-time dynamic simulation of or in an uncertain environment plausible. PFS allows for
interpolation to be conducted several orders faster than traditional methods. Moreover, the
method can generate infinite realizations from a single evaluation of the posterior; this is
beneficial in applications requiring Monte Carlo simulation to understand the average and
distributional nature of the dynamics. ICKA also allows for interpolation to be conducted
several orders faster than traditional methods. Moreover, it exhibits a nonexponential
relationship between runtime and problem size. This suggests that, if implemented correctly,
ICKA can have negligible runtime compared to integration runtime. Also, in theory, ICKA’s
computational storage is invariant to problem size.

2.2. Application Example

To illustrate the versatility of the proposed methods, we use them in this paper to simulate a
vehicle on randomly distributed patches of ice, in real time. The specifics of this simulation are
detailed in [15], but the essentials are discussed here. First, a model for ice is required; studies
in geostatistics suggest that the squared exponential is a representative correlation function
for Gaussian random processes [20], and a variation of that function will be used herein. In
order to address the natural bounds of ice (between dry friction µd and ice friction µs), a phase
parameter f is used with the Gaussian processes:
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6 K. SCHMITT, M. ANITESCU AND D. NEGRUT

f = − ln
(
µd − µ
µ− µs

)
∈ (−∞,∞). (3)

Note that the phase parameter is an infinite-dimensional random variable indexed by a
spatial variable. Take now a set of points in space x1, x2, . . . xM , and denote by f1, f2, . . . , fM
the random variables that represent the phase parameters at those points in space. Modeling
the phase parameter as a Gaussian process means that the vector F = (f1, f2, . . . , fM ) has
both a prior and a posterior multivariate normal distribution. The posterior distribution can
be determined from well-established statistical considerations applicable for any multivariate
normal distributions. The key attribute of Gaussian random processes is that the prior
distribution can be generated from a bivariate function, the covariance function, and a
univariate function, the mean function.

We use an exponential covariance function with hyperparameters θ2 = {γ, αx1, αx2} (p. 86,
[14]), and a linear mean function with hyperparameters θ1 = {a0, a1, a2}:

m(x; θ1) = a0 + a1x1 + a2x2, (4)

k(x, x′; θ2) = exp

(
−
[

(x1 − x′1)
αx1

]2/γ

−
[

(x2 − x′2)
αx2

]2/γ
)
. (5)

The hyperparameters are determined from data by a maximum likelihood estimation as
described in Section 3.1.

The vehicle model used on the ice, shown in Figure 1, has an open-loop steering system set to
execute a constant radius turn without any axial forces applied. The model has three degrees
of freedom: longitudinal motion Vx, lateral motion Vy, and yaw Ωz. Three input functions
determine the behavior of the model: steer angle δf and the front and rear wheel road adhesion
coefficients µf and µr, respectively. The governing equations are as follows:

Figure 1. Bicycle model used in preliminary research of methodology [21].
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m(V̇x − VyΩz) = −Fyf sin δf
m(V̇y + VxΩz) = Fyr + Fyf cos δf (6)

IzΩ̇z = l1Fyf cos δf − l2Fyr

Ẋ = Vx cos Θz − Vy sin Θz

Ẏ = Vx sin Θz + Vy cos Θz (7)

Θ̇z = Ωz.

The constitutive equations for the forces acting on the tires were provided by [21].

3. GAUSSIAN PROCESS DESCRIPTION OF SPATIAL UNCERTAINTY

Gaussian processes are a versatile approach for simulating infinite-dimensional uncertainty.
We say that a spatially distributed random variable η(x) is a Gaussian process with mean
function m(x; θ1) and correlation function k(x, x′; θ2) if, for any set of space points X =
{x1, x2, . . . , xM}, we have that

η(X) =


η(x1)
η(x2)

...
η(xM )

 ∼ N (m(X; θ1),K(X,X; θ2)) .

Here we denote by N (f,K), where f ∈ RM and K ∈ RM×M is the M–variate normal
distribution with mean f and variance K given by

m(X; θ1) =


m(x1, θ1)
m(x2, θ1)

...
m(xM , θ1)

 , K(X,X ′; θ2) =


k(x1, x

′
1; θ2) k(x1, x

′
2; θ2) · · · k(x1, x

′
N ; θ2)

k(x2, x
′
1; θ2) k(x2, x

′
2; θ2) · · · k(x2, x

′
N ; θ2)

...
...

...
...

k(xM , x′1; θ2) k(xM , x′2; θ2) · · · k(xM , x′N ; θ2)

 ,

where X ′ = {x′1, x′2, . . . , x′N}, and θ1 and θ2 are the hyperparameters of the mean and
covariance functions, an example of which can be found in Section 2.2.

As in reference [14], we employ a Bayesian point of view in dealing with uncertainty. The
hyperparameters θ1 and θ2 are obtained from a data set η(D) at nodes D = {d1, d2, . . . , dM}.
The posterior distribution of the variable η(S) at node points S = {S1, S2, . . . , SN}, consistent
with η(D), is N (f∗,K∗) [14], where

f∗ = K(S,D; θ2)
[
K(D,D; θ2) + σ2

NIM
]−1

(η(D)−m(D; θ1)) +m(S; θ1) (8)

K∗ = K(S, S; θ2)−K(S,D; θ2)
[
K(D,D; θ2) + σ2

NIM
]−1

K(D,S; θ2). (9)

We have included the modification to the posterior distribution that is brought about by the
noise in the data with variance σ2

N .
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8 K. SCHMITT, M. ANITESCU AND D. NEGRUT

The key issues in simulating from this posterior model are how to obtain the hyperparameters
from data and how to sample from N (f∗,K∗), especially in the case where M is very large.
The classical approach is to do a Cholesky factorization of K∗, a costly order O(M3) operation.

To simplify the notation, we will use the same symbols for a vector of random variables
as for the vector of locations to which these variables are attached: for example, η(D) → D,
and η(S) → S, the use of which will become clear from the context. In addition, we will not
explicitly represent the dependence of m(·) and k(·, ·) on the hyperparameters θ.

3.1. Calculation of Hyperparameters

At the outset of the interpolation process, a prior mean function and a variogram model are
selected as a function of space and several descriptive hyperparameters. Before training the
posterior and sampling from it, the hyperparameters must be estimated to evaluate the prior.
Since this step is unavoidable, we will briefly discuss and validate our learning method.

A commonly used rooted method for the estimation of the hyperparameters from data
is maximum likelihood estimation [14]. The method relies on the maximization of the log-
likelihood function. In the multivariate Gaussian with mean m(θ) and covariance matrix Ky(θ)
case, the log-likelihood function assumes the form

log p(y|θ) = −1
2
WTKy(θ)−1

W − 1
2

log |Ky(θ)| − M

2
log 2π (10)

where W = y − m(θ) and y is the observed data. In the case of spatial uncertainty, the
dependence on the hyperparameters θ appears by means of the spatial coordinates x.

In the example in Section 2.2, we have that θ = {θ1, θ2, σn}. The gradients of the likelihood
function can be computed analytically [14]:

∂

∂θ1j
log p(y|θ) =

1
2

tr
(

(K(θ)−1W (K(θ)−1W )T −K(θ)−1)
∂K(θ)
∂θ1j

)
(11a)

∂

∂θ2j
log p(y|θ) = −

(
∂

∂θ2j
m(θ)

)T
K(θ)−1W (11b)

∂

∂σn
log p(y|θ) =

1
2
σntr

(
K(θ)−1W (K(θ)−1W )T −K(θ)−1

)
. (11c)

It can be proven that the gradient of K(θ) with respect to any hyperparameter maintains a
periodic matrix structure. This fact suggests that all evaluation inside the trace operator can
be done in the frequency domain after the K and ∂K

∂θ1j
are diagonalized with FFT. Nonetheless,

since the conditional sampling part of our procedure is far more time consuming, we use the
FFT-based direct diagonalization only for its matrices.

To determine the hyperparameters, we use the MATLAB fsolve function. This function
implements a quasi-Newton approach for nonlinear equations. We apply it to the nonlinear
equations (11) obtained from the optimality conditions of maximizing the likelihood function.
We note that using an optimization approach would have resulted in the need to compute
the objective function at multiple points in hyperspace. This involves the evaluation of the
determinant, which is currently not known to be possible in a matrix-free setting. Note that
(11) can be evaluated in matrix-free fashion by using conjugate gradient techniques for linear
systems that are equivalent to the application of K−1 by using an FFT approach. Although a
matrix-free approach for MLE has not been implemented in this paper, this is a major block
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EFFICIENT SAMPLING OF SPATIAL UNCERTAINTY 9

for using optimization approaches for large problem of the type we intend to solve in the future.
We have thus decided to carry out the MLE procedure by a nonlinear equations approach in
order to test its feasibility.

3.2. Conditional Density Decomposition

Both of the methodologies presented in this paper hinge on conditional sampling with Gaussian
processes; that is, both data and previous samples are used when training new data sets. As
the following sections demonstrate, the two new approaches lead to substantial efficiency gains.
First, however, this manner of conditional sampling must be validated. The controversy invoked
by our conditional sampling is that it learns and infers from previously computed Gaussian
samples; later samples are conditioned on earlier ones. It must be shown that this method is
statistically representative of the traditional Gaussian process where all samples are computed,
all at once, from the observed data only. In statistical notation, our method can be equated
to the old method by

P(S1, S2|D) = P(S2|S1, D) ∗P(S1|D), (12)

where D is the observed data space, S1 is the data space for the first iteration, and S2 is
the data space for the second iteration. The motivation behind our “divide and conquer”
approach is twofold. First, we will show that the aggregate of all conditional simulations is
sometimes more efficient to carry out than one comprehensive simulation. Second, the memory
requirements of a successive conditioning approach can be much reduced compared to the all-
at-once approach. We also note that the conditioning procedure can be applied recursively
to result in as small a dimension of the variable to be sampled as needed, provided that the
parameters of the conditional distribution can be efficiently determined.

The equality (12) can be expressed with probability densities by using the multivariate
Gaussian distribution joint probability density function [14]:

p

((
S1

S2

)
|m1,Σ1

)
= p(S2|m2,Σ2) ∗ p(S1|m3,Σ3) (13)

p(x|m,Σ) = (2 ∗ π)−n/2|Σ|−1/2 exp
(
−1

2
(x−m)TΣ−1(x−m)

)
, (14)

where m is the posterior mean vector, Σ is the posterior covariance matrix, x is the sample,
and n is the number of elements in the sample. The aggregate covariance matrix Σ1 and the
conditional covariance matrices Σ2 and Σ3 are defined in equation (33) in Appendix 1.

The proof of (14) can be obtained directly from the conditional probability rule (12) by
using the expression of the conditional variance of Gaussian processes [14]. The complicated
structure of the matrices in (33), however, makes the identities (13–14), which are central to
all calculations in this work, impossible to verify directly.

We therefore undertake to prove (14) using only linear algebra. That proof, which draws on
Schur complement techniques, is given in Appendix 1. This result will be taken advantage of
in PFS and ICKA.

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 33:1–34
Prepared using nmeauth.cls
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4. SPECTRAL APPROACH

Here we present the procedure and theory of our first method for conducting Gaussian processes
on large spaces or fine-grained evaluation grids. As shown, PFS is used to ensure a data
structure for which spectral methods may be used. The spectral analogy for each Gaussian
processes step is then explained and validated.

4.1. Sampling Procedure: PFS

The question that motivated the PFS is simple: how can one conduct high-fidelity interpolation
avoiding the bottleneck of large matrix storage and computation without compromising
accuracy and robustness? A satisfactory answer can be produced as soon as two assumptions
regarding the spatial distribution of the training input data and input data periodicity are
made. The sampling follows a regimented strategy called folding .

In terms of the spatial distribution of the training input data, PFS is applied strictly to
data initially provided on a lattice. This assumption certainly reduces the applicability of the
methodology. Still, countless applications exist where data is compiled this way. Small-scale
data collection, in custom lab experiments, for instance, is one area where lattice data collection
is readily achievable. PFS makes a strong case for the priority of lattice data collection in
experiment setup. Another important application of PFS is in satellite-collected data because
the range of satellites makes their data collection flexible and adaptive. Note that although
the paper focuses on the two-dimensional methodology, little alteration is required to extend
the methodology to higher dimensional spaces.

The input data periodicity assumption is quantitatively described in the covariance function
that we use when implementing the example in Section 2.2. We use a variation of 5 that is
forced to be periodic:

Kp(x, x∗) =


∏l
s=1 exp

(
−
[
|xs−x∗s |
αs

]2/γ)
|xs − x∗s| < Ls/2∏l

s=1 exp
(
−
[
Ls−|xs−x∗s |

αs

]2/γ)
|xs − x∗s| > Ls/2,

(15)

where l is the number of dimensions, x is a point in the first data set, x∗ is a point in the
second data set, Ls is the dimension respective length, and αs is the dimension respective
characteristic length-scale. Because this class of periodic matrices is an algebra, the periodic
assumption ensures that the Gaussian processes-computed posterior covariance matrix (shown
in 9) will also be periodic. This periodic nature will allow us to diagonalize the matrix with
FFT.

The periodic assumption has been used in a broad range of research and applications fields
to achieve significant efficiency gains. The aspect that adversely impacts this approach is
the Gibbs phenomenon: the correlative misrepresentation of sample points near the space
boundary, especially those within two characteristic length-scales of the boundary. Points near
the boundary are predicted to have large correlation with boundary points on opposite sides of
the space, which is of course false unless the space is innately periodic, spherical or cylindrical,
for instance. In natural distributions, this drawback is critical only if the inspected space is
on the order of the characteristic length-scale, which is rarely the case. If this is the case,
less sophisticated regression methods can be used to predict data. It is important to note the
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D2 D4

D1 D3
−→

D2 S12 D4 S14

D1 S11 D3 S13
−→

D2 S12 D4 S14

S22 S24 S26 S28

D1 S11 D3 S13

S21 S23 S25 S27

Figure 2. Pictorial representation of first two iterations of sampling method.

erroneous nature of our method near the boundaries, however, so that information is drawn
only from accurate samples and simulations are conducted away from the boundaries.

The regimented sampling strategy required by PFS, introduced above as folding , is done
iteratively. Each iteration folds or shifts the sample points half a resolution from the existing
data; thus, each iteration doubles the sampled space. Subsequent iterations then use the
previously interpolated data to learn from. This strategy is illustrated in Figure 2. Figure 3
shows in detail the direction and magnitude of each consecutive shift; each time the direction
of shift is rotated by −π/2, and the magnitude of shift is reduced 50 percent. The conditional
nature of sampling was discussed in detail in Section 3.2. The fold method of sampling ensures
that the K12 covariance matrix will be square and FFT diagonalizable as proven and leveraged
in Section 4.2.

Figure 3. Direction and magnitude of the iterative shift.

Formally, we have a series of increasing grids of data, ΓD, Γ1, Γ2, . . ., Γn. We are given the
data vector D on ΓD, and we want to sample the output vectors S1 on Γ1, S2 on Γ2, . . . , Sn
on Γn.

We use iteratively the conditional probability density formula. This results in

p (S1, S2, . . . , Sn|D) =
n∏
i=1

p (Si|D,S1, S2, . . . Si−1) . (16)

The product rule allows for incremental sampling. Starting from D, we sample for sets Si of
increasing index i conditionally on the preceding sample values. A key observation is that, for
Gaussian processes, the conditional distribution is algebraically easy to obtian (33).

We note that

dim(Si) = dim(D) +
i−1∑
j=1

dim(Sj), i = 1, 2, . . . , n. (17)
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12 K. SCHMITT, M. ANITESCU AND D. NEGRUT

This results in the vectors to the left and right of the conditional symbol having the same size.
In turn, this allows us to show that a conditional sample can be easily calculated by using
FFT techniques. Note, however, that it is quite possible that the FFT approach can work in
some form even where (17) does not hold. The proof in that case will be the subject of further
investigation.

This manner of sampling is not suitable for computing realizations at ad hoc locations
because only coordinates (N1sx/2n, N2sy/2n) are interpolated, where n is the number of fold
iterations, sx and sy are the respective dimension observed data resolutions, and N1 and N2 are
positive integers. Kriging methods are better suited for the computation of single realizations
at predefined coordinates. However, as long as the coordinate requirements can tolerate small
error, PFS is extremely effective because of the fineness that is achievable in small runtimes.
In Section 6.4, plots are shown of runtime as a function of iterations or analogously sample
resolution s/2n.

4.2. Matrix-Free Computation of Posterior Distribution Characteristics

After the estimation of the hyperparameters, the conditional mean vector and covariance
matrix are computed. The key to implementing an efficient version of the recursive conditioning
method (16) is to design an efficient method for sampling from the conditional distribution
p (Si|D,S1, S2, . . . , Si−1).

In the following, subscript 1 refers to the coordinates of the observed and simulated data
set, Γ1 = {D,S1, S2, . . . , Si−1}, and subscript 2 refers to the half-resolution shift of those
coordinates, Γ2 = Si. With this block notation, the prior distribution is

(Γ1,Γ2) ∼ p(D,S1, S2, . . . , Si) ∼ N
((

m1

m2

)
,

[
K11 K12

K21 KW

])
.

Reference [14] presents a time-domain framework for computing the Gaussian posterior
distribution characteristics from the observed data y incorporating measurement noise σn,
using the prior mean, (4), and the prior covariance matrix, (5). This results in p(Γ2|Γ1) ∼
N (f∗,K∗), where

f∗ = m2 +K21KW
−1(y −m1) ∈ RN (18a)

KW = K11 + σ2
nID ∈ RM×M (18b)

K∗ = K22 −K21KW
−1K12 ∈ RN×N . (18c)

Here M is the number of observed and currently simulated data, and N is the dimension of data
vector to be sampled. Note that, in this notation, ID is the identity operator when reduced to
the D subblock of Γ1, and it is 0 otherwise; it is not the identity matrix of dimension M . The
matrix blocks are obtained from the covariance function as K11 = k(Γ1,Γ1), K12 = k(Γ1,Γ2)
and K22 = k(Γ2,Γ2) Note that (18) is a condensed version of (8) and (9), where the subscripts
qualify which variate is on which covariance matrix axis.

Clearly, the operations involved in this process, matrix inverses and matrix products, will
lead to excessive runtimes to compute the posterior. Furthermore, storage capabilities begin
to falter when the number of sample points N is in the neighborhood of 104 because of the
N2 entries in the covariance matrices.

Our method emulates the framework outlined above, maintaining its robustness and
accuracy, but uses the impositions discussed in Section 4.1 to conduct all expensive operations

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 33:1–34
Prepared using nmeauth.cls



EFFICIENT SAMPLING OF SPATIAL UNCERTAINTY 13

in the frequency domain. It is based on the key observation that all covariance matrices, K11,
K12, and K22 (herein called the shift covariance matrix), are FFT diagonalizable; that is,
Ka = Q ∗ Da ∗ Q′, where Da is a diagonal matrix and a is one of the pairs 11, 12, 22, and
W . Q is a unitary matrix such that Q = F(IN ), where F is FFT over the space bearing the
uncertainty. In a two-dimensional space, FFT is defined as (using the array indexing from 0)

{xlq}
F→
{
x̂lfqf

}
; x̂lfqf

∆=
1
N2

N−1∑
l,q=0

xlqe
−i( 2π

N llf+ 2π
N qqf)

 , ∀lf , qf = 0, 1, . . . , N − 1. (19)

In the following, we denote by D the set of either data grid points or data random variables
and by Da a diagonal matrix identified by its subscript a. Note that N need not be the same
in both the l and q variable, but the proofs are carried out under this assumption for algebraic
convenience.

The matrices K11, K12, and K22 are periodic matrices. If the spatial dimension is one, they
are circulant matrices. In two dimensions, they satisfy the following property, described by a
generic matrix K, indexed by the grid index pairs

Klq,l′q′ = u ((l − l′)modN, (q − q′)modN) , l, l′, q, q′ = 0, 1, . . . , N − 1. (20)

Here u is a function defined on {0, 1, . . . , N − 1} × {0, 1, . . . , N − 1}. In particular, K11,K12,
and K22 satisfy (20) for

u11(l, q) = u22(l, q) = k

(
lLx
N

,
qLy
N

)
, u12(l, q) = k

(
(l + 0.5)Lx

N
,
qLy
N

)
, l, q = 0, 1, . . . , N−1.

Recall that we take the covariance function k to be periodic over a rectangle of dimension
Lx×Ly. We consider only an x-shift, but the y-shift conclusions follow as well by the ensuing
argument. The matrix KW is also representable as (20), with the function

uW (l, q) = u11(l, q) + σ2
nδ((l)modND, (q)modND), l, q = 0, 1, . . . , N − 1,

where δ(l, q) = 1 if l = 0, q = 0, and it is 0 otherwise.
We now provide a short proof of the fact that matrices with the structure described by (20)

can be diagonalized by FFT. While this result is simple and ubiquitous for covariance matrices
such as K11 and K22 [20], we are not aware of a simple proof in the Gaussian process literature
based on the representation (20). The latter is central to our method, since it shows that K12

is also diagonalizable by FFT.
Indeed, take the FFT basis vectors: the FFT transform of the columns of the identity matrix.

They are, up to a scaling parameter,

V lf ,qf =
{
v
lfqf
l,q

}
l,q

; v
lfqf
l,q = e−i(

2π
N llf+ 2π

N qqf), ∀l, lf , q, qf = 0, 1, . . . , N − 1.

Here the variables l, q index the entries in the FFT basis vector whereas lf , qf index the vectors
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14 K. SCHMITT, M. ANITESCU AND D. NEGRUT

themselves. We then have that

[
KV lfqf

]
lq

=
N−1∑
l′,q′=0

Klq,l′q′v
lfqf
l′q′

(20)
=

N−1∑
l′,q′=0

u ((l − l′)modN, (q − q′)modN) , e−i(
2π
N l′lf+ 2π

N q′qf)

= e−i(
2π
N llf+ 2π

N qqf)
N−1∑
l′,q′=0

u ((l − l′)modN, (q − q′)modN) e−i(
2π
N (l−l′)lf+ 2π

N (q−q′)qf)

= e−i(
2π
N llf+ 2π

N qqf)ψ(lf , qf ) = ψ(lf , qf )vlfqfl,q ,

for all lf , qf , l, q = 0, 1, . . . , N − 1. Here,

ψ(lf , qf ) =
N−1∑
l,q=0

u(l, q)e−i(
2π
N llf+ 2π

N qqf). (21)

Therefore,
KV lfqf = ψ(lf , qf )V lfqf , ∀lf , qf = 0, 1, . . . , N − 1.

This shows that the matrix K is indeed diagonalizable by the FFT basis vectors and that
ψ(lf , qf ) are its eigenvalues and, thus, its diagonal entries in that basis. Note that the diagonal
elements will be real for K11 and K22 because of their symmetry but they will likely be complex
for K12 because of the Lx

2N shift.
To demonstrate the diagonalization property numerically, we use the diagonalization-by-

FFT error operator Ψ, which is defined, by using the MATLAB diag function convention,
as

Ψ(K) = ‖Q′KQ− diag (diag(Q′KQ)) ‖. (22)

As a first check, at each iteration the priors K11 and K22 should be equal because of the
PFS sampling strategy; the nonhomogeneity of the data is not factored in until the posterior.
Table I in Section 6.2.1 reflects this. Second, the diagonalizable-by-FFT property of K11,K22,
and K12 is demonstrated in Table I.

Next, using the results of our proof of diagonalizability for periodic matrix structures (20),
we create a framework for direct diagonalization of the covariance matrices. The elements
of the FFT diagonal of the covariance matrix can be generated directly by using (21), as
opposed to constructing Q first. After some bookkeeping, these values are ordered into the
FFT diagonal Da, where a is either 12/22, or W . This direct diagonalization is necessary
because the generation of the unitary matrix Q and the computation of the product Q′KQ
proves to be a substantial bottleneck for large values of N . The subscript notation we used for
the time-domain covariance matrices is used for the directly diagonalized matrices D22, DW ,
D12. The operator Γ is used, where

Γ(Ka) = ‖Q′KaQ−Da‖, a = 22, 12,W, (23)

to show equivalence of the directly and indirectly derived diagonals for different iterations in
the Section 6.2.1.
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EFFICIENT SAMPLING OF SPATIAL UNCERTAINTY 15

Now, all of the expensive operations in Gaussian processes described in (18a) can be
conducted in the frequency domain after direct diagonalization by using (21). With our
methods, the adjustment to the posterior mean f ′ is computed in the frequency domain and
then mapped back to the time domain with a two-dimensional inverse FFT and added to the
posterior mean.

f∗ = m2 + f̂ ∈ RN (24)

f̂ = F−1(D21DW
−1Ŵ ) ∈ RN

DW = D11 + σ2
nIM ∈ RN×N ,

where Ŵ = F(y −m(x)).
The FFT diagonal of the covariance matrix can be used for sampling and thus does not ever

have to be mapped to the time domain. This fact has significant implications for our runtime
because we avoid large matrix products and inverses in posterior computation, and we avoid
having to take large matrix square roots when sampling from N (f∗,K∗) (18):

D∗ = D22 −D21DW
−1D12 ∈ RN×N . (25)

4.3. Matrix-Free Multivariate Gaussian Sampling

Sampling from a multivariate Gaussian distribution matrix such as N (f∗,K∗) is a
mathematically simple, but computationally expensive, operation as it requires a large matrix
square root of K∗ to be taken. In the time domain, a Cholesky decomposition of the covariance
matrix is taken, and the upper triangular matrix L1/2 is multiplied by a vector of standard
normals u. This procedure brings in the O(N3) computational effort for Cholesky for kernels
that are not compactly supported.

The posterior distribution sampling can be done more efficiently in the frequency domain
first by creating û = F(u) and simulating

S∗ = f∗ + f̂∗ ∈ RN (26)

f̂∗ = F−1((D(f∗))1/2û) ∈ RN ; û ∼ N (0N , IN ) .

Now, the Cholesky decomposition is avoided entirely, leading to remarkable efficiency gains,
especially when Monte Carlo simulation is employed to compute trends and errors in dynamic
simulations. Plots of the sample covariance matrix normalized error vs. number of samples,
in Section 6.2.2, show convergence equivalent to that of traditional methods. These results
demonstrate the accuracy of our process from start to finish. Since these methods are based
entirely on FFT operations, they have a theoretical computational effort bound of O(NlogN),
compared to the O(N3) bound of Cholesky.

5. INCREMENTAL COMPACT KERNEL APPROACH

The conditional sampling of Gaussian processes approach discussed in detail in Appendix
1 allows for a unique approach where small grid spaces can be interpolated dynamically at
runtime throughout a simulation. This can replace the all-at-once presimulation, allowing for
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16 K. SCHMITT, M. ANITESCU AND D. NEGRUT

constant computational effort regardless of problem size. The idea of dynamic grid building is
especially useful for Eulerian perspective dynamic simulation. In the sections that follow, our
sampling framework for ICKA is described in detail.

5.1. Incremental Simulation

An interesting simplification appears when the prior covariance structure has compact support.
That is, we have that

Cov [γ(x), γ(x′)] = 0 for ‖x− x′‖ ≥ ε.

Consider now the initial point x0 and an open set Γ, x0 ∈ Γ. Denote by δΓ the boundary
of the set Γ and by d(·, ·) the Euclidean distance. Then trajectories that start at x0 are
independent of values of γ at points x′ outside Γ, as soon as

d(x(t), δΓ) > ε.

This situation points to the following strategy for incrementally sampling a trajectory. We
take a ball Bl(x0, r) with a radius r > ε. Here, 1 ≤ l ≤ ∞ is the norm used in the definition of
the ball. We simulate the Gaussian process at all grid points of fixed size inside Bl(x0, r). We
advance the trajectory until it reaches a point no farther than r− ε from x0 in the l norm. We
denote that point x1. We construct B(x1, r), and we sample on the grid in it, conditional on all
the values sampled before, using (13). We advance the simulation up to a point x2 no farther
than r− ε from x1, which we denote x2. We continue the process until we reach the prescribed
time interval or other termination criterion. This should produce the same distribution of x(t)
as if the whole sampled surface were computed at once.

Since only a small fraction of sampling points needs to be computed, we expect this approach
to be much faster than computing the whole surface. Moreover, the conditional distribution
should consider conditioning only with respect to sample points on the grid no farther than
r + ε from the center of the current ball. If the dynamical system progresses without a lot of
“winding,” that number is very small. Therefore, even the conditional simulation needs both
low computational effort and low memory.

In our simulations we condition only with respect to the sample points in the ball preceding
the current one. While one cannot a priori prove that this is approach sufficient, for our case
the results give distributions indistinguishable from whole-domain sampling. In any case, the
total number of points with respect to which we condition does not have to be any larger than
the number of sampling grid points inside of a ball of radius r + ε in the l norm.

5.2. Compact Support Kernel

To allow for only local consideration of the sample space, one must assume that the covariance
between points becomes exactly zero when their distance exceeds a certain threshold; this
threshold quantifies the allowable magnitude of locality. Rasmussen and Willams [14, Ch.
4.2] suggest a family of piecewise polynomial covariance functions with compact support that
guarantee positive definiteness in RD. We use a variation of the R2 equation for our numerical
experiments,

k(r) =

{
(1− r

ε )j+1 r < ε

0 r > ε,
(27)
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EFFICIENT SAMPLING OF SPATIAL UNCERTAINTY 17

where r =
√
x2

1 + x2
2, ε defines the compact threshold, and j quantifies the function

smoothness. The compact kernel allows for computational exploitation, but the question still
lingers of how sensitive the simulations are to the use of a compact kernel; we explore this in
Section 6.3.2.

For our convergence study we wanted to use a compact kernel that approximated our baseline
γ-exponential function. Some trial and error was used to select the hyperparameters for both
covariance functions to allow for likeness. If γ = 2 in (5), and j = 3 in (27), then likeness is
achieved when ε = 5 ∗ αx1 = 5 ∗ αx2 . Two like kernels are shown in Figure 4. Note that the
compact kernel decays to zero at r = ε.

Figure 4. Comparison of exponential kernel and compact kernel; αx1 = αx2 = 2.5 and ε = 12.5.

5.3. Sampling Procedure: ICKA

As discussed, the sampling procedure of our methodology involves the dynamic interpolation
of small grids in the regions of interest. Imagine a vehicle traveling in uncertain space. Values
are needed only at the points of contact of the vehicle; thus, only data and previously sampled
values (as stipulated by the proof in Appendix 1) within the compact kernel threshold, ε,
need to be used for training the interpolation. Since it would computationally expensive to
interpolate with Gaussian processes for each integration step, we instead interpolate on small
grids large enough to accommodate the simulation for multiple time steps; this strategy is
presented pictorially in Figure 5. Further research is required to determine an optimal grid
size to capture the efficiency of small grid interpolation without excess interpolation.

For the interpolation of grid 1 in Figure 5, only the observed data within ε of the grid
boundaries were used for training the new data set S. For grid 2, the observed data and S
within ε of the grid boundaries were used for training the new data set S; S values were
updated each time a new grid was built, and old values were discarded. For this reason, our

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 33:1–34
Prepared using nmeauth.cls



18 K. SCHMITT, M. ANITESCU AND D. NEGRUT

Figure 5. Pictorial representation of incremental sampling procedure.

sampling procedure is valid only if the location of interest is such that ∂xD
∂t > 0. This way,

our sampling procedure does, in theory, result in constant computational effort, invariant of
problem size.

Another issue with our sampling procedure is the risk of discontinuities at grid changes.
When the grid is updated over an integration step, one cannot guarantee that points of interest
will undergo a continuous change, especially if a low evaluation grid resolution is used; the
spline fit to the evaluation grid may change significantly at points of interest in a single time
step. Note that, in order to curb this, it would be advantageous to include the coordinates of
the points of interest in the training and test sets to translate continuity over a grid update.
We could not do so, however, because our spline fitting procedure was strictly for data on a
lattice and points of interest are not necessarily on this lattice. We found that it is helpful to
use an explicit integrator to attenuate the discontinuities at grid changes. An alternative is to
use an implicit integrator but stop and restart the integration at the grid updates, transferring
the end conditions from the current integration to the initial conditions of the next, preventing
the implicit integrator from encountering discontinuities.

6. NUMERICAL RESULTS

Numerical results are reported below to support the methodologies presented in this paper, as
well as their use in the dynamic application described in Section 2.2. We present convergence
studies demonstrating the accuracy of the methods together with effort vs. problem-size plots
to illustrate the significant gains in terms of runtime and storage.

6.1. Validation of Hyperparameter Estimation

A leave-one-out cross-validation procedure was used to verify the accuracy and reliability of our
hyperparameter estimation method. To start, we generated data from known hyperparameters
and divided this data into ten unique training and testing sets. The training sets were used
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EFFICIENT SAMPLING OF SPATIAL UNCERTAINTY 19

to estimate the hyperparameters, and the resulting posteriors were compared to the test set
data. For each test, we verified the expected behavior of the prediction method: that the test
data f ∼ N (f̂ ,Σ), where f̂ and Σ are the mean and covariance matrix predicted from the
training set, respectively. Using the central limit theorem, one can expect that

(f − f̂)TΣ−1(f − f̂) ∼ N (n,
√

2n). (28)

This is explained in detail in Appendix 2.
The performance of our estimation was checked for two unique sets of hyperparameters.

For each hyperparameter test there were ten cross-validations, generating ten Z-scores. The
resulting CDFs for the Z-scores are plotted against the expected CDF (given infinite cross-
validation tests) and are shown in Figure 6. The plot qualitatively validates the results of our
estimation method.

6.2. Validation of the Spectral Approach Results

For the spectral approach resulting in our PFS method, we investigate only the sampling
of η(x) itself and not the dynamical simulation. Once such sample surfaces consistent with
the Gaussian process prior are obtained, simulations can be done by virtually any engineering
package followed by postprocessing of the sampling trajectories. Such an approach was followed
in [15], where the highly nonlinear dynamics of a vehicle model was simulated in the commercial
multibody dynamics package ADAMS [22]. The value added by our work is in the sampling
efficiency accompanied by the proof of the fact that our method is consistent with the state
prior. This part will be validated by numerical examples below.

6.2.1. Validation of Diagonalizability and Diagonal Equivalence The PFS method is such that
the covariance matrices exhibit predictable and exploitable structure. Two key expectations
are that the K11 and the K22 will be equivalent and that all priors K11, K22, and K12 will be
diagonalizable with the unitary matrix Q for each fold iteration. Table I demonstrates these
expectations for six fold iterations using the diagonalization error operator Ψ (22).

Table I. Verification of Covariance Matrix Structure

Iteration ‖K11 −K22‖ Ψ(K22) Ψ(K12)

1 0 .0003e-10 .0001e-10
2 0 .0027e-10 .0010e-10
3 0 .0079e-10 .0036e-10
4 0 .0275e-10 .0466e-10
5 0 .1943e-10 .1351e-10
6 0 .4960e-10 .7803e-10

To leverage the operations in the frequency domain, we needed to be able to map to the
FFT diagonal without producing the unitary matrix Q. We did so using the explicit formula
for the diagonal entries in the FFT basis, (21). Table II compares the directly and indirectly
diagonalized matrices, using (23), to show their equivalence for seven fold iterations.
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20 K. SCHMITT, M. ANITESCU AND D. NEGRUT

(a) Stationary data: γ = 4, αx = αy = 1.5, a0 = 1, a1 = a2 = 0.

(b) Nonstationary data: γ = 4, αx = αy = 1.5, a0 = 3, a1 = a2 = 0.1.

Figure 6. Cross validation CDF comparison.

6.2.2. Convergence Study of Spectral Approach To verify accuracy and representativeness,
we compare the mean and covariance computed from the sampled data generated by our
PFS method with the mean and covariance posteriors computed with traditional methods, all
samples computed at once. We expect to see the sample posteriors and the actual posteriors
converge as the number of samples increases. The plots in Figure 7 show that our method’s
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Table II. Verification of Equivalence of Directly Diaganolized Matrices

Iteration Γ(K11) Γ(K22) Γ(K12)

1 .0133e-13 .0133e-13 .0022e-13
2 .0178e-13 .0178e-13 .0266e-13
3 .0155e-13 .0155e-13 .0355e-13
4 .0355e-13 .0355e-13 .0375e-13
5 .2842e-13 .2842e-13 .0711e-13
6 .3553e-13 .3553e-13 .4263e-13
7 .5684e-12 .5684e-12 .5969e-12

computed posterior covariance matrices converge at an approximate rate of 1/
√
N , the same

as with Cholesky simulation with PFS. Furthermore, the sample mean should converge to the
traditional mean vector as computed in (18a). This property is shown in Figure 8.

6.3. Dynamic Simulation

The nonlinear vehicle simulation discussed previously was supplemented with both of the
uncertainty quantification methodologies presented in this paper. In this subsection we
present evaluation output for modeling the uncertain space encompassing the simulation.
Then, we show a convergence study for ICKA with vehicle trajectory (instead of posterior
characteristics). An efficiency analysis concludes this subsection.

6.3.1. Evaluation Grids for Dynamic Simulation To demonstrate the versatility of our
methods for the two-dimensional application discussed, we present several grid inputs and
outputs. Also, we briefly discuss the legitimacy of spline fitting of sampled data to interpolate
in continuous space, essential for our computer experiments.

Two cases are shown in Figure 9. In both, Gaussian processes with PFS sampling are used
to interpolate the data, refining the space 24-fold; one realization is shown for both data sets.
The first data set is stationary with high frequency, and the second is nonstationary with low
frequency. The resulting refinements were computed in approximately 0.4 seconds.

For each refined sample, a cubic spline f is used to make predictions outside the N -node grid.
This is important in continuous simulation. During the simulation, f(X̂(tk)) is interpolated
to evaluate trajectory at all points at any time. Further, Monte Carlo simulation is used to
understand the average behavior of the simulation.

Of course, at points away from the evaluation grid, the field function f approximated by
splines no longer obeys the Gaussian process model; it is only an approximation of it. One can
show, however, that, in the limit of the evaluation grid spacing going to zero, the results of the
simulator converge to those that would be obtained if proper Gaussian process sampling had
been employed at the points required by the integration procedure. This convergence is due
to the fact that almost any sample f surface is smooth [14]. This convergence is illustrated
numerically in [15].

Figure 10 shows a single realization of the incremental approach during the dynamic
simulation. Using the grid sizes we prescribed, we interpolate less than half of the rectangular
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(a) Stationary, high-frequency data: γ = 4, αx = αy = 1, a0 =
a1 = a2 = 0.

//

(b) Non-stationary, low-frequency data γ = 4, αx = αy =
3, a0 = 0.5, a1 = a2 = 0.1.

Figure 7. PFS derived covariance matrix convergence.

space encompassing the simulation, leading to improvements in time and storage. The overlaps
of the grids are not exactly equivalent, but the resolution of the evaluation is fine enough to
maintain a relatively smooth transition; the type of smoothness required in grid transition
depends entirely on the sensitivity of the system being simulated.

6.3.2. Convergence Study of the Incremental Approach The incremental approach is validated
numerically with a trajectory convergence study from the nonlinear dynamic simulation;
this is done because the interpolated data itself (on a path) cannot be compared to the
interpolated data from traditional methods (on a grid). Figures 11 and 12 show convergence of
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(a) Non-stationary, low-frequency data: γ = 4, αx = αy =
3, a0 = 0, a1 = a2 = .5

(b) Stationary, high-frequency data: γ = 4, αx = αy = 1, a0 =
1, a1 = a2 = 0

Figure 8. PFS derived mean vector convergence.

the cumulative distributions of the rotational velocity of the vehicle at the end of simulation
for the traditional method and the incremental approach, both employing the compact support
kernel (27). Figures 13 and 14 show the same convergence when the traditional method employs
the exponential covariance function (5).

The same type of convergence is observed in both studies, with slightly less error in the case
where both sampling procedures used the compact support kernel. This was expected because
of the likeness between the covariance functions used, as demonstrated in Figure 4. We note,
however, that while this likeness was hypothesized in [14], it was also left as an open question
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(a) γ = 4, αx = αy = 3, a0 = a1 = a2 = 0. (b) γ = 4, αx = αy = 5, a0 = 0, a1 = a2 = 0.06.

Figure 9. Grid refinements.

to be demonstrated by numerical experiments. Our work adds a body of evidence that backs
up that hypothesis.

An interesting characteristic of the end trajectory samples is that they are not normally
distributed, as shown by the deviation of the CDFs from normal in Figures 12 and 14.
This behavior implicates complexities and sensitivities in our system. Further analytical and
numerical studies remain to be done to more thoroughly understand the sensitivity of systems
to the substitution of compact support, but for our vehicle it appears that dynamic grid
simulation is a viable approach.

6.4. Efficiency Comparisons

Without doubt, uncertainty quantification methods need to become faster. Decades of work
have spanned the mathematical and statistical frontiers, developing robust, reliable, and
accurate methods. An understanding of areas where one can afford to make assumptions or
impose conditions allowed us to develop two substantially faster methods. The plot shown
in Figure 15 demonstrates the computational efficiency of PFS in terms of runtime and
memory storage. PFS runtime starts lower and has a smaller exponential growth than that
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Figure 10. Example of a grid refinement with ICKA.

(a) 20 samples. (b) 100 samples.

Figure 11. Convergence study of dynamic grid simulation when convergence target uses compact
support.

of traditional methods conducted in the time domain. Moreover, PFS demonstrates reduced
storage requirements. Traditional methods implemented in MATLAB became impractical at
eight iterations or approximately 9,000 data points; this requires the storage of matrices with
over 81×106 entries. In the frequency domain, all information is contained in the FFT diagonal
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Figure 12. Convergence study of dynamic grid simulation when convergence target uses compact
support: 500 samples.

(a) 20 samples. (b) 100 samples.

Figure 13. Convergence study of dynamic grid simulation when convergence target uses Eq. 5.

values, so the largest storage is equivalent to N instead of N2.

The plot shown in Figure 16 demonstrates the immense computational gains achievable
with the incremental approach for long simulations. The simulation shown is that of a
vehicle executing a ninety degree constant radius turn, longer simulation times leading to
larger problem spaces. Note that the times given in this plot are for a single realization;
the incremental method is less useful when Monte Carlo simulation is applied because new
realizations require completely fresh simulations as opposed to a single Cholesky decomposition
for all realizations as with traditional methods. As shown before, the traditional method
exhibits exponential growth in runtime and storage with increasing problem size. It is shown
that the incremental approach has a nearly linear growth in runtime with simulation time;
that is, the Gaussian process computation time is negligible with respect to the simulation
integration time. The computational storage effort, in theory, is invariant with respect to
simulation time; the maximum storage remains constant because old grid information is purged
when outside the compact kernel threshold.
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Figure 14. Convergence study of dynamic grid simulation when convergence target uses Eq. 5: 500
samples.

7. CONCLUSIONS AND FUTURE WORK

The research presented in this paper introduces two conditional sampling methods for
efficient handling of spatial uncertainty in dynamical systems. We prove that the methods
correctly sample from the underlying Gaussian process. We demonstrate that the methods
have both small computational costs and low memory requirements and are suitable for large-
space and fine-grid spatial uncertainty sampling.

The two new methods developed are called periodic fold sampling (PFS) and the
incremental compact kernel approach (ICKA). PFS (based on an FFT approach) is effective
for interpolation and quantification of spatial data provided on a lattice. With only a periodic
data assumption, reflected in the covariance matrix, and a conditional sampling regiment, PFS
can do all the steps of traditional Gaussian processes in the frequency domain. Fast Fourier
transforms are employed to map between the frequency domain and time domain when needed.
Each step in this method – conditional sampling, hyperparameter estimation, computation of
posterior with noise incorporated, and multivariate Gaussian sampling – is proven analytically
and verified with numerical results. The computational effort is O(n log n) to sample a vector
of length n compared to the O(n3) effort of the Cholesky-based approach. To our knowledge,
the issue of efficiently sampling the posterior distribution on a grid has not previously been
developed or demonstrated with this level of detail. We also note that the periodic assumption
is not limiting if we slightly oversample our domain. The approach is limited by the fact
that the data provided must reside on a coarse grid, many such example applications exist.
In addition, the approach can benefit uncertainty quantification in many areas of mechanical
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Figure 15. FFT methodology for periodic data shown to be several orders faster than traditional
method. The traditional method reaches a memory limit after eight iterations.

engineering with infinite-dimensional uncertainty subspaces with smooth realizations. These
include contact mechanics and boundary roughness effects in continuum and fluid dynamics.

ICKA is effective for Eulerian perspective dynamic simulation. The method dynamically
updates small interpolation spaces in proximity of the location of interest and thus avoids large
grid interpolation completely. The method is only accurate statistically if a compact kernel
is used to quantify covariance; that is, covariance between points becomes zero beyond some
threshold distance. The compact kernel and implementation of the approach were discussed
in detail.

For PFS, plots showing convergence of our sample covariance matrix and mean vector with
traditionally computed posteriors demonstrate the accuracy of the method for a variety of data
types in two-dimensional space. Convergence of dynamic system behavior under uncertainty
interpolated with traditional methods and then our incremental method demonstrates the
accuracy of ICKA.

The most important metric presented in this paper is the plot of effort vs. number of samples.
It is shown that PFS leads to substantial runtime benefits, especially when the sample set is
large. Furthermore, traditional methods are shown to run out of memory between 5,000 and
10,000 sample points, while PFS in theory should be able handle up to 107 sample points.
Even more promising effort results are shown for the incremental approach. The effort of the
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Figure 16. Runtime of traditional method and incremental approach shown as a function of simulation
time or space to accommodate simulation. The traditional method reaches a memory limit after ten

seconds in this simulation.

Gaussian process interpolation appears to be negligible compared to the integration resulting
in linear relationship between runtime and simulation duration. With only a few impositions,
our frameworks combine the accuracy and reliability of Gaussian processes, with the speed
achievable with spectral or white-noise methods. Furthermore, the restrictions of our methods
are not severe, making one if not both of them valid and usable in nearly all data environments.

The combined speed and accuracy of PFS and ICKA should prove relevant in industry
applications, such as vehicle dynamics and nuclear reaction simulation. In terms of future
work this contribution opens up exciting new research opportunities. Since ICKA relies on
a balance between grid size and the number of small grid interpolations required over an
entire simulation, an optimization study would be challenging but would bring spatial data
interpolation to unsurpassable efficiency levels. Research should focus on the multi-variate
spatial uncertainty problem from both a ”how” and ”how faster” perspective.
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APPENDIX

I. Multivariate Gaussian Conditional Sampling Proof

Prove

p

((
S1

S2

)
|m1,Σ1

)
= p(S2|m2,Σ2) ∗ p(S1|m3,Σ3), (29)

where

p(x|m,Σ) = (2 ∗ π)−n/2|Σ|−1/2 exp
(
−1

2
(x−m)TΣ−1(x−m)

)
, (30)

where m is the posterior mean vector, Σ is the posterior covariance matrix, x is the sample,
and n is the number of elements in the sample.

The expressions involved in this multiplicative equality can thought of as composed of three
parts for our proof: 1) the scalar, 2) the determinant scalar, and 3) the exponential term. This
proof will demonstrate the equalities separately.

1. Numeric Scalar Equality

(2π)−n1/2 = (2π)−n2/2 ∗ (2π)−n3/2,

which follows from n1 = n2 + n3. QED
2. Determinant Scalar Equality

Directly, we must prove

|Σ1|−1/2 = |Σ2|−1/2|Σ3|−1/2. (31)

It can be shown that this is identical to the equality

|Σ1| = |Σ2||Σ3|. (32)

From [14], the posteriors are

Σ1 = k(Ω1,Ω1)− k(Ω1, D)
(
k(D,D) + σ2

nI
)−1

k(D,Ω1) (33a)

Σ2 = k(S2, S2)− k(S2,Ω2)
(
k(Ω2,Ω2) + σ2

nID
)−1

k(Ω2, S2) (33b)

Σ3 = k(S1, S1)− k(S1, D)
(
k(D,D) + σ2

nI
)−1

k(D,S1), (33c)

where Ω1 =
(
S1

S2

)
and Ω2 =

(
D
S1

)
.

Next, we define

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 33:1–34
Prepared using nmeauth.cls



EFFICIENT SAMPLING OF SPATIAL UNCERTAINTY 31

A =

 k(D,D) + σ2
nI k(D,S1) k(D,S2)

k(S1, D) k(S1, S1) k(S1, S2)
k(S2, D) k(S2, S1) k(S2, S2)

 (34)

B =
[
k(D,D) + σ2

nI k(D,S1)
k(S1, D) k(S1, S1)

]
(35)

C = k(D,D) + σ2
nI. (36)

In this proof, we make heavy use of the Schur determinant formula

det
[
A11 A12

A21 A22

]
= detA11 · det (A22 −A21A11

−1A12). (37)

When using the Schur formula while solving for one of the right-hand side terms, we call
it the inverse Schur formula.
It then follows that

Σ1 =
|A|
|C|

(38)

Σ2 =
|A|
|B|

(39)

Σ3 =
|B|
|C|

. (40)

Finally,

|A|
|C|

=
|A|
|B|
∗ |B|
|C|

(41)

|A|
|C|

=
|A|
|C|

.

QED

3. Exponent Equality
Some new notation will be used for this proof because of its higher complexity. We
introduce the matrices A,B,C,D,E,F to represent the respective posteriors. Note,
that boldface is used to distinguish from other variables previously used in this proof;
especially, note the difference between D for data and D and the difference between A
for the matrix in (34) and A.
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A = x1 −m1 =
(
Y1

Y2

)
− k(Ω1, D)k(D,D)−1YD (42a)

B = Σ1 (42b)

C = x2 −m2 = Y2 − k(S2,Ω2)k(Ω2,Ω2)−1

(
YD
Y1

)
(42c)

D = Σ2 (42d)
E = x3 −m3 = Y1 − k(S1, D)k(SD, SD)−1YD (42e)
F = Σ3 (42f)

Note that, for clarity, measurement noise is not included in this portion of the proof which
can be shown to hold even when σn 6= 0. With the notation introduced, the hypothesis
concerning exponents of (29) is

ATB−1A = CTD−1C + ETF−1E. (43)

Result α
Taking the inverse Schur with respect to B, we get

−ATB−1A =
det
[

B A
AT 0

]
.

det B
(44)

Then ,taking the inverse Schur with respect to k(D,D), we get

det B =
detA

det k(D,D)
(45)

det
[

B A
AT 0

]
=

det


· · · YD
· A · Y1

· · · Y2

YD
T Y1

T Y2
T YD

T k(D,D)−1
YD

 .
det k(D,D)

(46)

Here and in the following we denote by · an empty matrix block.
So, from (44-46), we obtain that

−ATB−1A =

det


· · · YD
· A · Y1

· · · Y2

YD
T Y1

T Y2
T YD

T k(D,D)−1
YD

 .
detA

(47)

Result β

Using the Schur complement of
(

D 0
0 F

)
, we have

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 33:1–34
Prepared using nmeauth.cls



EFFICIENT SAMPLING OF SPATIAL UNCERTAINTY 33

CTD−1C + ETF−1E = −

det

 D 0 C
0 F E

CT ET 0

 .
det D · det F

(48)

Result δ
Taking the inverse Schur with respect to k(D,S1) of D and inverse Schur with respect
to k(D,D) of F, we obtain

det D =
detA

det k(Ω2,Ω2)
(49)

det F =
det k(Ω2,Ω2)
det k(D,D)

det D · det F =
detA

det k(D,D)
. (50)

Result δ
First, execute a row transformation, then an inverse Schur with respect to k(D,D), then
a Schur with respect to k(Ω2,Ω2):

det

 D 0 C
0 F E

CT ET 0

 = det

 F 0 E
0 D C

ET CT 0

 (51)

=
1

det k(D,D)
· det


k(Ω2,Ω2) · 0 YD
· · 0 Y1

0 0 D C
YD

T Y1
T CT YD

T k(D,D)−1
YD


=

1
det k(D,D)

· det k(Ω2,Ω2) ·
[

D C
CT Ξ

]
,

(52)

where

Ξ = YD
T k(D,D)−1

YD −
(
YD
Y1

)T
k(Ω2,Ω2)−1

(
YD
Y1

)
. (53)

Taking the inverse Schur with respect to k(Ω2,Ω2), k(Ω2,Ω2) cancels out, and we have

det

 D 0 C
0 F E

CT ET 0

 = − 1
det k(D,D)

· det


· · · YD
· A · Y1

· · · Y2

YD
T Y1

T Y2
T YD

T k(D,D)−1
YD

 .
(54)

Combining Results α, β, γ, and δ we prove our original hypothesis (43). QED
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II. Cross-Validation Hypothesis

We start by assuming f ∼ N (f̂ ,Σ). Thus,

u = (f − f̂) ∼ N (0,Σ). (55)

Then, we use Σ−1/2 to make a linear map of u.

m(Σ−1/2u) = Σ−1/2m(u) = 0 (56)

COV (Σ−1/2u) = (Σ−1/2)COV (u)(Σ−1/2)T (57)
= (Σ−1/2)Σ(Σ−1/2)T

= Σ−1Σ
= I

So, if v = Σ−1/2u ∼ N (0, I) ∈ R(m×1), we expect that vT v ∼ χ2
n, where n is the number

of elements in the test set. By applying the central limit theorem to the χ2
n distribution (as

n→∞), we can expect

(f̂ − f)TΣ−1(f̂ − f) ∼ N(n,
√

2n). (58)
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